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Abstract

This thesis describes how fractal geometry was used to serment synthetic aperture

radar (SAR) images. The fractal dimension of each non-overlapping 8x8 pixel region in

a 512x512 pixel image was estimated by use of a multidimensional extension of the box

counting algorithm. The differences in estimated fractal dimensions were used to differ-

entiate between regions. The SAR images used were represented by quantized "surfaces".

These surfaces were defined by nine different datasets of various Euclidean dimensions

ranging from three to five. The degrees of freedom (Euclidean dimensions) of the datasets

were the X and Y coordinates of each pixel and various combinations of power return

values, magnitude return values and phase return values for each pixel. The SAR return

values for four different SAR transmit and receive polarization configurations were deter-

mined by polarization synthes.s techniques using the Stokes vectors of the transmitted and

backscattered waves and the target reflectivity phase matrix. Phase matrix data for three

different scenes was provided by the Jet Propulsion Laboratory, Pasadena, CA.

Thesis results indicate that the fractal dimension of an image "surface" provides a

useful method to segment SAR images. Comparisons between segmentations made using

various datasets indicate that datasets containing the magnitude and phase return values

yield more information helpful to image segmentation than do datasets containing only

power return values. It was also determined that combinations of the various types of return

values (ie. power, magnitude and phase returns) into a single dataset of higher Euclidean

dimension, can lead to better segmentations than those made using lower dimensional

datasets. The fractal dimension estimation and segmentations techniques used in this

thesis are not unique to SAR imagery. They may be easily applied to any data which can

be arranged into datasets representing image "surfaces."

xi



FRACTAL GEOMETRY SEGMENTATION

OF POLARIMETRIC

SYNTHETIC APERTURE RADAR IMAGES

I. Introduction

1. 1 Overview

This chapter provides a brief discussion of the general image segmentation and object

identification problem and presents one potential approach to solving this problem using

fractal geometry. The proposal for this thesis, including the basic assumptions, thesis

scope, evaluation criteria and expected gain is also presented. A list of necessary support

equipment, both hardware and software is included. This chapter concludes with a brief

description of the content of each of the following chapters.

1.2 Background

Identification and classification of Synthetic Aperture Radar (SAR) images is of

particular interest to the United States Air Force. The computer automation of this

identification process requires mathematical descriptions of the objects (images) of interest.

Several methods currently exist of modelling objects using a relatively new mathematical

science called fractal geometry.

Synthetic Aperture Radar "is an airborne (or spaceborne) radar mapping technique

for generating high resolution maps of surface target areas and terrain." [15:185) As such,

most SAR images contain both natural and man-made objects. It is hypothesized that the

fractal dimensions of these natural obiects are distinct from those of man-made objects.

Further, it is theorized that complex polarimetric data collected by the SAR which is

usually discarded during the generation of SAR images may hold some information helpful

to object identification.
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1.3 Problem

The specific purpose of this thesis is two-fold.

1. Determine if the use of fractal dimension is a valid criteria for distinguishing features

and objects in SAR images.

2. Determine if use of full polarimetric data aids in the process of feature segmentation

and identification in SAR images.

1.4 Assumptions

"Fractal geometry provides both a description and a mathematical model for many

of the seemingly complex forms found in nature." [4:11 It is this property of fractals which

stimulates such great interest in their study. Alex Pentland's experiments using fractals

as models of nature led him to conclude "that fractal-based segmentation will likely prove

a general and powerful technique." [22:671] It is this hypothesis upon which the work in

this thesis is based.

1.4.1 Fractal Model of Nature. The most basic assumption upon which this research

effort is based is that objects can be modelled by fractal sets. While this premise is certainly

supported by the literature [4] [5] [8] [20] [17] [22] [27] [35], its validity for this thesis will

only be proven in the thesis final results.

1.4.2 Images Model the Scene. A second major assumption is that the images of

natural scenes contain the information necessary to make conclusions about the scene itself.

Pentland found in his research that "... we can estimate the fractal dimension of the surface

by measuring the fractal dimension of the image." [22:664]

1.4.3 Spatial Invariance of Fractal Model. This thesis also assumes that the mea-

sured fractal dimension of the images is independent of both scale and orientation. The

validity of this assumption follows directly from the definition of self similarity of a fractal

set. It is further supported by Pentland's observations that a linear transformation (rota-

tion or translation) of a fractal set is a fractal set with the same fractal dimension [22:665]
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and that in his experiments the computed fractal dimension of natural scenes was "always

stable over at least 4:1 variations of scale; most segmentations were stable over a range of

8:1." [22:668]

1.5 Scope

This thesis proposed to differentiate between natural and man-made objects and

between different naturally occurring regions by determining the distribution of fractal

dimensions within the SAR images. Initially, this methodology was applied for a dataset

consisting of the power return values used in conventional SAR analysis. The same tech-

nique was then applied for each of the possible co-polarized and cross-polarized datasets

and various combinations of complex polarimetric data.

1.6 Evaluation Criteria

The validity and quality of this segmentation technique was both a subjective de-

termination by the author and his thesis advisor and committee and an objective analysis

based on the technique's ability to differentiate between areas of interest within the SAR

images. The subjective determination was made after visually comparing the segmented

imag s to the original SAR images and making a determination of the accuracy and utility

of the fractal segmenting technique based on a priori knowledge about the objects and

scenes depicted in the original images. The objective analysis judged the quality of the

segmentations based on comparisons of a calculated figure of merit.

1.7 Support Equipment

The following equipment, software and materials were required for this thesis. All

were resident in the AFIT Signal Processing Laboratory located in Building 641.

" MicroVax II Workstation with tape drive.

" MicroVMS 4.4 Operating System.

- VAX FORTRAN V5.0 Compiler.
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- MATRTXx V2.0 Software package.

The Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA,

provided the polarimetric SAR data.

1.8 Additional Support

This thesis was sponsored by Dr. Edmund G. Zelnio, Chief of Technology Group,

Wright Research Development Center, Wright Patterson, AFB, OH. (Office symbol: AARA -

2. Telephone Number: 255-3050, AV 785-3050)

1.9 Conclusion and Expected Gain

If the fractal geometry method of segmentation is valid, then results of this thesis

will be useful as an automated data reduction technique in the interpretation of SAR im-

ages. If the interpretation of images containing full polarimetric data provides information

helpful to object identification, this thesis will also present a "better" object identification

technique than those currently employed for analyzing SAR images.

1.10 Remaining Chapters

Chapter II of this thesis presents the background, definition and description of fractal

geometry. It includes examples of fractal sets and explanations of the properties of fractals

relevant to this thesis.

Chapter ITI describes Synthetic Aperture Radar (SAR). It contains explanations of

why and how SAR is used and how polarimetric data is obtained. It also contains a brief

description of the equipment and algorithms used by JPL to collect the data used in this

thesis.

Chapter IV contains the thesis methodology. Herein is explained the methods chosen

to solve the problems of estimating the fractal dimensions of SAR images and how these

images were displayed and segmented.

Chapter V contains the results and analysis of the thesis methodology.

1-4



Chapter VI is the thesis conclusion. It also presents the author's recommendations

for further studies in this area.

A supplement to this thesis is available through AFIT/ENG. It includes listings of all

of the FORTRAN programs used in this thesis and an Operating Guide for the use of the

datasets and the FORTRAN programs. Distribution of the thesis supplement is restricted

to DOD personnel only.
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II. Fractal Geometry

2.1 Overview

This chapter provides a definition, background and explanation of the properties

of fractals. It includes a rationale for the study of this new geometry and its potential

applications.

2.2 Background

Benoit B. Mandelbrot coined the term "fractal" and developed a new "geometry of

nature," called fractal geometry, in the 1970's [20:4]. This new field provided an arena

for the study of a variety of curves and shapes that, after their original discovery, were

discarded for decades simply because they could not be explained by the rules of classical

Euclidean geometry. Examples from this "gallery of monsters" are continuous but non-

differentiable curves [3:2], the Peano space filling curve [17:3], Cantor dusts [17:74], and

traces of physical Brownian motion [17:12].

2.3 Definition

Mandelbrot defines a fractal as "a set for which the Hausdorff Besicovitch dimension

strictly exceeds the topological dimension." [17:15] This is denoted DI > Dt, where Df

is the "fractal dimension" and Dt is the "topological dimension."

Topological dimension is a rigorous mathematical term which generally corresponds

to our intuitive sense of Euclidean dimension. For example, a shape containing only disjoint

points (a dust) has a topological dimension of zero, a continuous curve or line has Dt equal

to one, a surface has D equal to two, and a volume has a Dt of three. Although topological

dimension is always an integer, the dimension of a fractal need not be an integer [17:15).

The fractal dimension provides an objective means for comparing and contrasting fractals

[4:172]. It also provides a subjective feel for the "density" [4:172], "roughness" [22:662], or

"wiggliness" [3b:6] of a curve or surface.
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2.4 Self 5imilarity

Perhaps the most important and useful property of fractals is that of self similarity.

When each piece of a shape is geometrically similar to the whole, both the shape

and the cascade that generate it are called self similar. [17:34]

It is this property of fractals that distinguishes them most from the shapes of con-

ventional Euclidean geometry. Simply stated, a self similar fractal is identical to itself

regardless of the reference scale in which it is observed [35:171. This property makes frac-

tals extremely useful in overcoming the general pattern recognition problems associated

with translation, scaling and rotation [14:59].

A self similar fractal can be thought of as "a set of N copies of itself (with possible

translations and rotations), each of which is scaled by a factor, r, from the whole" [35:17].

Using this property, the fractal dimension (also called similarity dimension) is given by

[17:44]

Dt- (2.1)

where

Df = the fractal dimension

N = the number of self similar subintervals of the fractal

r = the length of each of the subintervals

(assumes the total length of the fractal is normalized to one)

Equation 2.1 is helpful when building a fractal set with a specific desired dimension.

The size and number of the parts of the fractal will be determined by this equation.

Conversely, Equation 2.1 can also be used to make a rough estimate of the fractal dimension

of an existing fractal set. By counting and measuring the size of the parts of this fractal,

and using these as estimates for N and r, an estimate of DI can be calculated.
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A more accurate estimate of the fractal dimension of an existing set however, is given

by [4:1771.

Df = ir in(N)(2)D l I n(,Y~ (2.2)

L-.o in(l)

Equation 2.2 is often used instead of Equation 2.1 to help estimate the fractal di-

mension of fractal set. However, this thesis makes use of Equation 2.1 when making these

estimates. The rationale behind this decision is included in Chapter IV.

2.5 Fractal Dimension Estimation

Although its accuracy may not be the best possible, Equation 2.1 does provide a

resonable method for estimating the fractal dimension of a curve or surface. For example,

in Figure 2.1, the line segment is composed of five identical subintervals each having length

equal to one-fifth of the whole, therefore I/r is equal to five, and Df = ln(5)/ ln(5), or

one. The fractal dimension of this set is consistent with the intuitive sense of Euclidean

dimension of a line.

S i I,"' I. I

Figure 2.1. Self Simiiar Line Segment [17:34]

For the self similar Triadic Koch Curve, shown in Figure 2.2 in four stages of evolu-

tion, N is equal to four, 1/r is three, therefore D/ = ln(4)/ ln(3), or approximately 1.26

[13:Chap 2-4]. The Koch curve is generated by starting with a line segment of unit length.

The middle one-third of this line is then removed and replaced by two line segments of the

same length which form an equalateral triangle with the original middle segment. This
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remove and replace process is then repeated for every remaining line segment ad infinitum.

The Koch curve is more "wiggly" than the line segment of Figure 2.1 therefore its expected

fractal dimension is greater than one.

Figure 2.2. Triadic Koch Curve [15:29]

N is equal to two and 1/r is equal to three for the Triadic Cantor Dust, shown in

Figure 2.3, also shown in four stages of evolution, thus Df = ln(2)/ ln(3), or approximately

0.63. The Cantor Dust is generated by starting with a line segment of unit length. The

middle one-third of this segment is then removed. Then the middle one-third of each of the

remaining line segments is removed. This process is repeated ad infinitum. The Cantor

dust is a set which is more than a single point (it is actually of collection of "points"), but

it is less than the line segment from which it originated. Therefore its expected fractal

dimension is between zero and one.

In this manner, Equation 2.1 can be used to estimate the fractal dimension of an

object or shape that exhibits some self similarity over, at least, a small range of scaling.

This same method, extended in a 2-dimensional Euclidean sense, allows two other methods

of estimating the fractal dimension. These are the Closed Ball estimation and the Box

Counting estimation [4:174-177]. For these two methods the fractal subintervals are no

longer line segments, but are now taken to be circles or squares, respectively. A further
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Figure 2.3. Triadic Cantor Dust [7:158]

extension of the box counting algorithm which is used for the fractal dimension estimations

made in this thesis is explained in Chapter IV.

Still other methods, related to the statistics of the random variations of fractal

shapes, have also been shown to be reasonably accurate measures of fractal dimension.

These methods include the Grassberger-Procaccia Method [10:189], the Information Es-

timation Method [31:11], the Correlation Method [31:17], the Intensity Statistics Method

[29:2951, the Power Spectral Density Method [26:20], the Length of a Trail Method, the

Area/Perimeter relationship, the Variance of Increments Method [5:38], and the Hybrid

Brown Method [13:Chap 3-4]. Detailed explanations of those methods are not pertinent to

this thesis and are not included here. For the reasons behind the choice of the estimation

algorithm used in this thesis, the reader is referred to Chapter IV.

2.6 Summary

Fractal geometry is a new science which provides a mathematical and conceptual

method for the study of shapes and objects that do not adhere to the principles of classical

Euclidean geometry. Because these fractal shapes "look like" so many shapes that occur

in nature they are useful in the modelling and segmenting of natural scenes. Fractals can

2-5



be described by a number, defined as the fractal dimension, which can be used to compare

and contrast it with other fractals and Euclidean shapes.

Fractal geometry has already proven useful in the fields of cartography [27:1], land-

form analysis [20:627], and computer graphics [8:35]. Even so, it seems the full potential

for the use of fractals is yet to be fulfilled. Fractals show great promise in the areas of

digital communications encoding [25:74], film making [36:26], and mass computer storage

techniques [4:xi].
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III. Synthetic Aperture Radar

3.1 Overview

This chapter describes polarimetric Synthetic Aperture Radar (SAR). It includes a

brief description of the radar system used by JPL to collect the SAR data used in this

thesis. It also defines the transmit and backscatter Stokes vectors and the target phase

return matrix.

3.2 Synthetic Aperture Radar

Restating an earlier definition, SAR is an "airborne (or spaceborne) radar mapping

technique for generating high resolution maps of surface areas and terrain." (37:185] Wehner

states further that "the term synthetic aperture refers to the distance that the radar travels

during the time that reflectivity data are collected from a point to be resolved on the earth's

surface, which remains illuminated by the real antenna beam." [37:185] Because for real

aperture radars the azimuth resolution is inversely proportional to the real antenna size,

one way to improve the resolution (make it smaller) is by using a larger antenna [37:193].

By the use of a moving platform combined with clever processing, the real antenna size of

the relatively small airborne radar antenna set can be synthetically expanded to improve

the resolution of the radar. Specifically, an equivalently large aperture is synthesized by

sequentially sampling the fields present at discrete points along the synthetic aperture

length as the aircraft's small real aperture moves along the flight path. Thus the small real

aperture is essentially "stretched" into a large synthetic aperture. The subsequent phase

coherent summing of these values yields a return signal equivalent to the return signal

which would have been collected from a large real aperture (19:201. Thus SAR can provide

an advantage of better azimuth resolution over radars employing only a similarly sized real

aperture.

The resolution in the range direction is a product of conventional (real aperture)

pulse duration measurement techniques which use transmitted pulses that are usually

pulse compression waveforms. [24:443) [11:13].
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3..? Polorized Waves

Radar waves are polarized if their electric field is constrained in some fashion. If this

E-field is constrained to one dimension, the polarization is linear [23:1]. Horizontal (H)

and vertical (V) polarizations are common linear polarizations. Non-linear polarizations

are called elliptical polarizations. Circularly polarized waves are a special case of the

elliptically polarized waves. The ellipticity and orientation of an elliptically polarized wave

are determined by the angular parameters X and 0, respectively. Figure 3.1 illustrates how

x and determine the polarization of a radar wave.

L rT - K.'D C I ' C L.
PC,.R IZAT 1C:J

(E xPI1Y ~ A O\'TZ

0
S40 0 0 - .... -

,POLkR IZ T ICN

x E L 1 P17! C IE 
N5 L ,.

Figure 3.1. Ellipticity and Orientation of Waves [32:IV-l]
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•?. j Tranqrnit and Receive Configurations

Several combinations of transmit and receive polarization configurations are used in

this thesis. The linear co-polarized configurations are designated as HH, for horizontally

polarized transmit/horizontally polarized receive or VV for vertical transmit/vertical re-

ceive configurations. Similarly, HV designates the horizontal transmit/vertical receive

cross-polarized configuration. Elliptically polarized transmitted waves are described by

the parameters X and iP as explained above. The choices of values for X and b necessary

to generate the elliptically polarized transmitted waves that were used in this thesis were

made in order to deviate from both strictly linear and strictly circular polarizations. In

this manner, all of the elements of the target phase matrices would be exercised in the

calculations of the Stokes vectors of the backscattered waves. (See Equation 3.6.)

3.5 Polarimetric SAR

A radar target can be considered as a polarization transformer [38:537]. This means

the polarization properties of the transmitted wave are changed in some way by the target.

These changes are a function of both the electrical and physical properties of the target.

Therefore a good deal of information about the target is available in the polarization

properties of the backscattered wave. Most conventional radar systems, however, do not

take full advantage of all of the information available in this backscattered wave. They are

usually limited in both transmit and receive polarization options [9:246] [34:529]. These

systems also fail to retain any phase data when measuring and processing the backscattered

waves for subsequent aid to image display [9:258) [34:529]. This thesis pursues the question

of whether the use of either or both of these parameters, the polarimetric signature of a

target, or the phase of the backscattered wave, can contribute to the target description,

identification or segmentation processes.

3.6 JPL Equipment

Data used in this thesis was provided by the Jet Propulsion Laboratories. JPL used

a modified conventional SAR system as an imaging radar polarimeter [34:529). Equipment

specifications for the JPL radar system can be found in Zebker et al.
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The JPL radar set used two orthogonal linearly polarized antennas to transmit pulses

which were alternately horizontally, then vertically polarized. The co-polarized and cross-

polarized magnitude and phase return data was collected and used to synthesize the com-

plete complex polarization signature of the targets [39:683] [34:529]. This information

about the target is contained in its phase matrix.

3.7 Phase Matrix and Stokes Vectors

The phase matrix is a 4x4 element matrix which completely describes the polarimetric

reflectivity properties of a target [32:A-2]. A Stokes vector is a 4x1 element matrix that

represents the polarimetric properties of an electromagnetic wave. For a mathematical

derivation of these matrices the reader is referred to Hurst, page 41 and Thompson et

al, pages A-2 through A-10. The results of these derivations along with the JPL data

collection and calculation techniques are stated here.

The four elements of the normalized transmitted stokes vector, STX, can be computed

from the ellipticity and orientation parameters as follows [32:III-6]

t = 1

t=Y cos(0 2 ) cos(x 2 ) (3.1)

t = sin( 0 2 ) cos(x 2 )

ty = sin(x 2)

where
tWg

-TX (3.2)
ty

The backscattered waves were coherently collected by the JPL radar set. This data was

used to determine the Stokes vector of the measured backscattered wave. The co-polarized

and cross-polarized elements, b.., bry, b. and by, compose the Stokes vector of the
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backscattered wave, SBS. Where:

SBS - b=y (3.3)

by-

byv

This data was then used to determine the 4x4 phase matrix of the target. Reciprocity

is assumed so the phase matrix is symmetric. The elements of F are [ 2:A-3I:

P 1  = .25(1I... + 21.y=v + IM.,Y)

P12 = .25(1. - 1y )

P 3 = .5Re(l .. + I.y)

P14 = .51m(-I...gy - I. )

P22 = . - 21.y.,, + [yyyn) (3.4)

P23 = .5Re(I...,, - 1.,)

P24 = .5Im(-14g, + I..)

P33 = .5Re(l..vv + I=yy)

P34 = .51m(-I. )

P44 = 5Re(-I.y + I.,I.V)

where

I.X = b..bpy

13t1J1 =b..b (3.5)

=~y b,,b'Y

=rw bzyby

Iym = bwb;

The " in these equations denotes complex conjugation.
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Once the phase matrix for a target was known, the Stokes vector of a synthesized

backscattered wave could be calculated for any given transmit polarization by using the

transmitted wave Stokes vector and the target phase matrix [32:A-2] (12:43]. Such that

SBS = P STX (3.6)

where

SBS = 4x1 Stokes vector of the backscattered wave

= the 4x4 matrix representing the scattering

parameters of a target

-TX 4xl Stokes vector of the transmitted wave

The four elements of the Stokes vector of the backscattered wave (as defined by Equa-

tion 3.3) were then used to calculate the magnitude and relative phase of the horizontally

and vertically polarized components of the backscattered wave. The four elements of the

Stokes vector are expressed in terms of the magnitudes and phase in Equation 4.1.

3.8 Summary

SAR provides a way to increase system resolution over that of a conventional real

aperture imaging system. It also provides a method of collecting a great deal of data about

a target via the complex components and polarimetric properties of the backscattered

waves.
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IV. Methodology

4.1 Overview

This chapter describes the methodology for this thesis. It includes the entire process

of creating and displaying the image data, estimating the fractal dimensions of the different

regions within the images, displaying the segmented regions and displaying the histograms

which reveal the distribution of fractal dimensions estimated for each image.

4.2 Segmentation Process

One of the purposes of this thesis was to determine if areas or objects of interest in

an SAR image could be segmented from other areas or objects in the same image by use

of fractal geometry. To determine this, each 512x512 pixel dataset, representing an image

scene, was divided into 4096 adjacent, non-overlapping regions of 8x8 pixels each. The

fractal dimension of each of these 4096 regions was then estimated using an extension of

the box counting algorithm. The frequency of occurrence of small intervals of these fractal

dimensions were then plotted in a histogram. The segmented images were then displayed

along side of the original image (with an 8x8 pixel grid overlay) to visually determine the

effectiveness of the fractal geometry segmentation.

Figure 4.1 charts the methodology of this segmentation process. Each step of the

methodology, data decompression and normalization, image display, fractal dimension es-

timation, generation of the histograms and image segmentation, is charted from the top

down. The optional step of generating a three dimensional plot of the image "surface" is

also shown.

Each of these steps was performed by FORTRAN programs written by the author

for the Vax/VMS system. The names of these programs are enclosed in the boxes in

Figure 4.1. Explanations of each are provided below and in the thesis supplement.

The SAR data that was obtained from JPL in a compressed format, was decom-

pressed and normalized on a Digital Equipment Corporation (DEC) MicroVax computer.

The images, segmentations and histograms were displayed on a DEC Microvax Worksta-

tion.
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.. 1 Segmentation Display Options. The segmentations could be displayed as "ful

segmentation signatures" which mapped the entire histogram of fractal dimensions from

Df equal to 2.0 through D/ equal to the maximum for that image dataset. Another option

was to display all regions within the image with an estimated fractal dimension that fell

within some user specified interval of interest contrasted against all regions with estimated

fractal dimensions not within that interval. This interval of interest was often found by

observing the "peaks" and "valleys" in the histograms and choosing intervals based upon

these observations.

4.3 Datasets

The second purpose of this thesis was to determine if the polarimetric complex valued

data (the magnitude and phase) of the SAR returns yield any additional information about

the target scene than the power return values used in conventional SAR analysis. In pursuit

of this answer, segmentations for each scene were accomplished using nine different image

datasets. These nine datasets all included an X and Y coordinate corresponding to the

ground location of a pixel, but varied in the other parameter(s) chosen to encapsulate

information contained in the SAR returns. These nine datasets contained:

1. HH co-polarized power returns

2. VV co-polarized power returns

3. HV cross-polarized power returns

e Reciprocity was assumed therefore the VH power returns were identical to the

HV power returns [21:150).

4. Both the HH and VV power returns. This dataset was designated POL.

5. All three power returns, HH, VV and HV. This dataset was designated 3POL.

6. 6, the phase returns from an elliptically polarized transmitted wave.

7. Am, the horizontally polarized magnitude returns from an elliptically polarized trans-

mitted wave.
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Designation Dataset Contents Euclidean Dimension

HH X, Y, HH power returns 3

VV X, Y, VV power returns 3

HV X, Y, HV power returns 3

POL X, Y, HH, VV 4

3POL X,Y,HH,VV,HV 5

6 X, Y, 6 phase returns 3

AH X, Y, Horiz magnitude returns 3

AV X, Y, Vert magnitude returns 3

FULL X, Y, 6, AH, AV 5

Table 4.1. Summary of Available Datasets

8. AV, the vertically polarized magnitude returns from an elliptically polarized trans-

mitted wave.

9. All three complex values, 6, AH, and A, from an elliptically polarized transmitted

wave. This dataset was designated FULL.

These different datasets represented "surfaces" of varied Euclidean dimension. This

is illustrated in Table 4.1. Datasets of HH, VV, HV, 6, AH, and Av represent three dimen-

sional Euclidean surfaces (including the X and Y components). Dataset POL represents

a four dimensional Euclidean surface. FULL and 3POL represent five dimensional Eu-

clidean surfaces. The Euclidean dimension of these datasets relate directly to the number

of degrees of freedom of the data that comprise each set.

4.4 fmplementation

4.4.1 Creating Images. The SAR data for each of the scenes used in this thesis was

provided by JPL. All of the polarimetric data for the scenes was stored in a compressed

format on magnetic tape readable by a VAX machine using the VMS operating system.

Complete step-by-step instructions of how the compressed data files were copied from

magnetic tape to the VAX disk can be found in the supplement to this thesis.
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4.4.2 Data Decompression. After the data files were copied to the VAX disk, they

had to be decompressed. This was accomplished by using a modified version of a JPL

software program called Multitest. This program was available on one of the magnetic

tapes along with data from one of the scenes provided by JPL. Instructions for copying

this program to the VAX disk are included in the supplement.

The program Multitest decompresses the data for a given transmit and receive po-

larization (as specified by the user) and outputs a power return for each pixel in the image.

To create all nine datasets it was necessary to modify Multitest to output both the power

values for each pixel along with the complex data 6, AH, and Av. The Multitest program

was further modified to change the size of the output decompressed data file to a 512x512

pixel image. This image size was chosen because of its convenience for display on the

MicroVax workstation.

4.4.3 Creating Datasets. The nine different datasets were created by using two

different modified versions of Multitest. One version created datasets for the power images,

the other for complex (magnitude and phase) images.

4.4.3.1 Power Images. Data for images which show the power returns for each

of the pixels in the 512x512 pixel images were obtained by using the program DECOM. This

program was created by modifying Multitest to output the 512x512 pixel decompressed

power return datasets. After DECOM calculated the power return data for each of the

desired transmit and receive polarizations, the real valued numbers in these datasets were

normalized to integer values in the range I through 255 which mapped to an 8-bit color

map for subsequent image display.

The normalization program used for all power return datasets was called NNORM.

This program linearly mapped all of the real valued power returns in the decompressed

datasets between 0.001 and 1.0 to integer valued numbers between 1 and 255. The overall

mapping process however was non-linear from the minimum value to the maximum value

within the computed power datasets. The values between 0.001 and 1.0, which represented

the extreme low scale of the dataset values, were emphasized over values outside this range
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because values within this range were very common and those outside this range were

rare. Enhancing these low values was equivalent to applying a constant amplification

to the returns which brightened and enhanced the images. This normalization process

provided a very recognizable image. Other attempted linear methods of normalization did

not create recognizable images.

4.43..2 Complex Images. The JPL program Multitest was modified to pro-

duce datasets representing a 512x512 pixel image where each pixel was represented by

6, AH and Av. These real number values which represent the complex valued returns

were calculated using the information contained in the Stokes vectors of the backscattered

waves.

The calculations to determine both the Stokes vector of the transmitted wave (for

any user specified polarization), the phase matrix, and the values 6, AH, and Av for each

of the pixels in the scene were done by the program COMPLEX.

COMPLEX was a modified version of Multitest which suppressed the calculation

and output of the power return values for each pixel but calculated and passed both the

transmitted wave Stokes vector and the phase matrix for each pixel to the subprogram

BACK. BACK used Equation 4.1 to solve for, calculate and output the three values 6, AN

and Av corresponding to each of the 512x512 pixels in the image.

The 4xl Stokes vector of the backscattered wave was broken down into its four

elements b.., by I by, and by, where each of these components was described by [32:A-2]:

b., A' + A

b - A -A, (4.1)

by = 2ANyAvcos(6)

br = 2AHAvsin(6)

where AN, AV and 6 are as previously defined.

These real valued datasets were then normalized to integer values between 1 and 255

which were mapped to an 8-bit color map for subsequent image display. This process was
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accomplished by the program COMPNORM. The normalization of AFI and AV values was

similar to the normalization process for the power return datasets described above. The 6

values however, were linearly mapped from the minimum through the maximum observed

values to integers between 1 and 255, as this method provided the mbst recognizable

images.

4.5 Displaying Images

Images were displayed in one of two ways. The program IMAGE created images

using a color map ranging from dark blue for low valued integers (approaching 1), through

green for intermediate values, to dark red for the highest values (approaching 255) in the

normalized datasets. The program GRID8 performed the same function as IMAGE but

also overlayed a grid of 8x8 pixel boxes over the image. This grid was useful in comparisons

between actual image data and the segmentations of these images.

4.6 Fractal Geometry Segmentation Process

Program listings and descriptions of the functions of the FORTRAN programs that

performed the fractal dimension estimations, the segmentation displays and the histogram

displays are included in the supplement to this thesis.

4.6.1 Estimating Fractal Dimensions. The first step in segmenting SAR images us-

ing fractal geometry was to determine the distribution of the estimated fractal dimensions

for each of the 4096 8x8 pixel regiovs in a given image. This was done by applying an

extension of the box counting algorithm (4:1761 (35:561. An extension of the published algo-

rithm was necessary to facilitate estimations of fractal dimensions exceeding 2.0. This was

necessary because estimations were made on image "surfaces" which varied in Euclidean

dimension from 2 through 5.

4.6.1.1 Choice of Algorithm. The extended box counting algorithm was cho-

sen to perform the fractal dimension estimations because of its seeming ease of comprehen-

sion and computer implementation. Much of the more recent literature [2:1661] [33:1390]
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[31:131, published after this decision was made, state the impracticalities or inefficiencies

of the box counting algorithm for "high" imbedded dimensions. However only one author

defines the difference between high and low dimensions. Simm et al define low fractal

dimensions such that D t < 2.0 and high dimensions such that Df > 2.0 [28:518]. By

this definition, all of the estimates made in this thesis were high dimensions. However,

considering that the fractal dimensions of some strange attractors (a set which describes

the behavior of a dissipative dynamical system - usually represented by a nonlinear differ-

ential equation [28:511]) about which most of the recent literature is concerned, have been

estimated at above 15.0 [1], any estimate of D1 less than five was relatively low. Further,

since this thesis was the exploration of a new method, and it was desired only to get an

indication of the worth or "proof of concept" of this method, some minor inaccuracies in

the estimations made here were acceptable. In any event, the effect of any such errors

tended to be cancelled by the effects of the comparisons made between estimated fractal

dimensions of different image regions which were part of the segmentation process.

4.7 Description of the Eztended Box Counting Algorithm

A fractal dimension was estimated for each of the 4096 regions of an image. These

regions were defined by an 8x8 pixel base in the X and Y coordinates. Data for a third

dimension was read from the specified dataset and normalized to values between I and

8. This normalization was required so that the dataset representing the "surface" would

be bounded by a cube of side length 8. Thus the maximum deviation in any Euclidean

dimension (including the X and Y dimensions which were chosen to be bounded by an

8x8 pixel region) within the dataset would be 8 units. If applicable for the dataset under

observation, this normalization process was also performed on the data representing the

fourth and fifth Euclidean dimensions. Each 8x8 pixel region was then divided into adjacent

and non-overlapping cubes (or hypercubes for datasets of Euclidean dimension 4 or 5) of

a given side length. A count of the number of these cubes necessary to cover each of

the values defined by the dataset values in all Euclidean dimensions was performed. This

cube count was duplicated for cube sizes of side lengths 2 pixels and 4 pixels. The fractal

dimension of each region was estimated using Equation 2.1 for cube sizes of both 2 pixels
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and 4 pixels. An average of these two independent estimations was taken as the final

estimated fractal dimension for that region.

4.7.1 Why an Average. An average of the two estimations instead of the more

common (and mathematically rigorous) use of a limit as cube size approaches zero was

used for two reasons. First, the average was a much easier value to compute. Second, the

limit as cube size approaches zero (See Equation 2.2) takes on an indeterminate form for

quantized data (See Section 4.8) and must be obtained by L'Hospital's rule [15:31] or by

measuring the slope of a line of best fit on a log/log plot of the number of cubes counted

versus the cube size [35:26].

The process of averaging the two independent estimates was thought to introduce no

more error in the final estimation than would have attempting to find this line of best fit

for these curves. To test this point, the slope of a log/log plot was calculated and fractal

dimensions estimated for several regions picked at random. The averaging method and the

slope of the line of best fit method gave similar results for these regions. This comparison

is summarized in Table 4.2.
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Figure 4.1. Flow Chart of Methodology
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Region # # of cubes In(# of cubes) Ay Az m D! Ave Df % error

size=2 size=4 size=2 size=4 size=2 size=4

1 61 8 4.1 2.1 2.0 .693 2.89 2.97 3.00 2.98 3.11

2 37 6 3.6 1.8 1.8 .693 2.60 2.60 2.58 2.59 0.40

3 16 4 2.8 1.4 1.4 .693 2.02 2.00 2.00 2.00 1.00

4 24 5 3.2 1.6 1.6 .693 2.30 2.29 2.32 2.31 0.40

5 51 7 3.9 1.9 2.0 .693 2.89 2.83 2.81 2.82 2.42

Ave error 1.47%

Table 4.2. Comparison of Average Fractal Dimension and Slope Approximation

Table 4.2 compares the averaging method to the slope of the line of best fit method for

five regions selected at random. The table values have been rounded off for ease of display.

The number of cubes counted for cube sizes of both 2 pixels and 4 pixels are shown. Data

was provided from the cube counting process which was part of the fractal dimension

estimation procedure. If these two datapoints were plotted on a log/log plot, as explained

above, the approximate slope of the line of best fit would be given by Equation 4.2. Since

only two datapoints were available for each plot, the line of best fit was merely a line with

endpoints at the datapoints.

m =LY = D (4.2)
A f

where

m = the slope of the line

D' = the fractal dimension estimate by line of best fit method (4.3)

Ay = In(# of cubes of size=2) - In(# of cubes of size=4)

Az = In(4) - In(2) = .693

The two estimates of D!, for cube sizes of 2 and 4 pixels, were calculated using

Equation 2.1. The average of these two estimates was compared to D'. The greatest

"error" between the two different methods of estimating the fractal dimension of the regions
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was 3.11%. The average "error" was approximately 1.47%. The two methods clearly give

almost identical results.

4.7.2 Choice of Region Size. The use of regions of base size 8x8 pixels was deter-

mined by trying several different sizes and using the one that provided the best compromise

between conflicting requirements. On one hand, it was desired to keep the region size as

small as possible, which meant "good resolution" of the segmented regions. This was in

conflict however, with a desire to have the regions remain large enough such that as many

different cube sizes (less than the 8x8 pixel region size) as possible could be used in the

fractal dimension estimation process, thus increasing the accuracy of these estimates.

Regions of size 32x32 pixels and 16x16 pixels were tried and rejected as too large

to display any details of the image in the segmentations. A region size of 4x4 pixels was

rejected because it was so small that it allowed fractal dimension estimations using only one

cube size, that of side length equal to 2 pixels. Use of only this one estimation may have

introduced unacceptable errors. Many authors [22:671) [29:295) [5:40] [31:16] [30:4460],

discuss this problem of choosing the proper region size without a clear answer.

4.8 Quantized Surfaces

It should be noted that each of these "surfaces" represented by the datasets was actu-

ally a "quantized surface." Since data was available only for each pixel and the pixels were

some finite distance apart (representing the resolution of the radar) the "surfaces" were

not continuous. No attempt was made to interpolate values between observed pixel values

for any of the fractal dimension estimations. This was not thought to have contributed

any significant error or bias to the estimation process. However, even if it had done so, this

error would have been similarly biased for each of the regions for which a fractal dimension

is estimated, and would not have hampered any segmentation based upon comparisons

between these estimations. A quantification and study of the impact of possible errors of

this type is left for the future.
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•.9 Ezamples of Fractal Surfaces

Figures 4.2 through 4.4 show examples of the "surfaces" represented by one of the

three dimensional (Eucidean) datasets. The estimated fractal dimension of each region

is given under the respective figures. The fractal dimensions of the surfaces increase with

their apparent "roughness." The MATRIXx software package used to generate these figures

shows connections between the individual pixel values in the 8x8 pixel regions shown. As

explained above, this type of interpolation was not done by the fractal dimension estimation

algorithms.
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Figure 4.2. 3-D plot of surface with Df 2.00
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Figure 4.3. 3-D plot of surface with Df =2.4633
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Figure 4.4. 3-D plot of surface with D! = 2.9943

4. 10 Generation of Histograms

After the fractal dimension of each of the 4096 regions was estimated, a histogram

was plotted charting the number of occurrences of fractal dimension within a series of

small intervals spanning the range from the minimum estimated fractal dimension to the

maximum estimated fractal dimension for that dataset. The width of the intervals (bars of

the histograms) was arbitrarily chosen to be 0.04. This was a reasonable number because it

created a very readable histogram and simultaneously represented a small enough interval

to differentiate between similiar estimates of fractal dimension. The software package

MATRIXx was used to plot these histograms. Details on the use of MATRIXx are included

in the supplement to this thesis. "Peaks" and "valleys" in these histograms separated the

groupings of estimated fractal dimensions of the regions within a dataset. These groupings

of fractal dimensions were used to help generate the segmentations of the datasets.
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. 1 Di.playing Segmentations

Two different options were used to display the segmented images. The "full segmen-

tation signature" displayed all of the estimated fractal dimensions for a dataset in one

image. In these segmentations, the low fractal dimensions (approaching 2.0) were mapped

to dark blue, intermediate values to green and the highest estimated values (approaching

the degrees of freedom for that dataset) to dark red. The full segmentation signatures gave

an indication of the spatial relationships between regions of similar or different fractal di-

mensions. These signatures were often very useful in determining the utility of the fractal

dimension segmentation process.

The second method of displaying segmented images was useful when working with

the histograms. Regions with estimated fractal dimensions within a user specified interval

were displayed as dark red against a blue background. The blue background represented

those regions with estimated fractal dimensions outside of the specified interval. This type

of segmentation display was useful when a high contrast segmentation display was desired.

4.12 Summary

The SAR data from the JPL magnetic tapes was decompressed. The data of interest

(either the power return values or the magnitude and phase values) was calculated and

arranged into nine different datasets. These datasets were then normalized to integer values

between I and 255. They were then ready for display as images of the particular scenes or to

be run through the fractal dimension estimation algorithms. After the fractal dimensions of

the regions within the datasets had been estimated, histograms were produced illustrating

the distribution of the estimated dimensions. The segmentations were then ready for

display as either the full segmentation signature or as contrast segmentations highlighting

only those regions within the scene that had estimated fractal dimensions within a user

specified interval.
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V. Results

5.1 Overview

This chapter presents the results of this thesis. It includes descriptions and images of

each of the scenes used in the analysis of the segmentation process. It describes the anal-

ysis processes in which these segmentations were judged by both subjective and objective

standards.

5.2 Description of Scenes

The segmentation process was performed on three scenes.

* One scene was a view of the San Francisco, California area. The scene included the

Golden Gate Bridge, the city area with interior parks, the San Francisco Bay, and a

natural region of rough terrain north of the bridge.

* The second scene was a different view of the Golden Gate Bridge. It included the

water, a portion of the bridge, some natural regions and a small portion of the city.

e The third scene was of Moffett Airfield. This scene included an airfield, a city with

visible main roads, and a river surrounded by forested regions north of the city.

The pixel resolution of each of these scenes was approximately 10x10 meters.

5.3 Results

Two different examination procedures were used to determine the quality or effec-

tiveness of the segmentations. One was a purely subjective analysis performed on vari-

ous segmentations of the three scenes. The other method was an attempt to objectively

quantify, by means of a figure of merit, the effectiveness of the segmentations in order to

evaluate which datasets yielded the best segmentations. Explanations of these two analysis

procedures and their results are presented below.
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5.4 Suibjective Analysis

The following figures represent the images, segmentations and histograms for several

of the datasets created for each of the three scenes. Not all of the dataset segmentations

are shown here. The following figures were chosen to illustrate general results.
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Figure 5.1. San Fran HH Image

Figure 5.1 is an image of the San Francisco scene showing the power returns from an

HH co-polarized wave. The image clearly shows the city, parks, bridge and natural regions.
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Figure 5.2. San Fran HH Full Segmentation Signature

Figure 5.2 is the full segmentation signature for the image in Figure 5.1 and the

histogram for this segmentation. This figure shows that the fractal geometry segmentation

was able to differentiate most of the major regions and some of the details of the image. The

histogram shows a large number of regions with estimated fractal dimensions near 2.25.

These regions are generally regions which determine the boundaries between the major

areas or features in the image. The highest estimated fractal dimensions (approaching 3.0)

are in those regions corresponding to the city and the rough natural terrain.
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Figure 5.3. San Fran VV Image

Figure 5.3 shows the same scene generated from VV power return data. The VV

power return image shows more roughness in the water than does the HH power return

image. This is consistent with the literature concerning polarimetric power returns from

sea clutter [9:2521.
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Figure 5.4. San Fran VV Segmentation, 2.75 : D! <_ 3.0

Figure 5.4 is the histogram and contrast segmentation for the image in Figure 5.3.

The segmentation highlights those regions with estimated fractal dimension between 2.75

and 3.0. This segmentation does a reasonable job of separating the land from the water.
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Figure 5.5. San Fran POL Segmentation, 3.75 < D! : 4.0

Figure 5.5 is the histogram and contrast segmentation for the 4 dimensional (Eu-

clidean) dataset, POL, which includes the HH and VV power returns. The segmentation

highlights those regions with an estimated fractal dimension between 3.75 and 4.0. This

segmentation highlights the city regions.
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Figure 5.6. San Fran 3POL Segmentation, 3.75 _S DI !5 5.0

Figure 5.6 is the histogram and contrast segmentation of the 5 dimensional dataset,

3POL, which includes the HH, the VV and the HV power returns. The segmentation

highlights those regions with estimated fractal dimensions between 3.75 and 5.0. This

segmentation approximates a separation between manmade versus natural occurring areas

in the scene.
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Figure 5.7. San Fran 6 Image

Figure 5.7 is an image of the same scene generated using only the values of 6, the

phases of the return waves. It is difficult to determine much detail about the scene from

this image.
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Figure 5.8. San Fran 6 Full Segmentation Signature

Figure 5.8 is the full segmentation signature for the image in Figure 5.7. The seg-

mentation actually shows more detail about the scene than does the image.
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Figure 5.9. San Fran AH Image

Figure 5.9 is the image generated from the dataset containing only AH, the magnitude

of the horizontally polarized component of an elliptically polarized transmitted wave with

,x = -30 and ¢ = 30 degrees. This image shows great detail about the scene.
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Figure 5.10. San Fran FULL Segmentation, 4.0 < D1  5.0

Figure 5.10 is the contrast segmentation and histogram of the five dimensional

dataset, FULL, containing 6, AH and Av values for the X = -30, ip = 30 transmit-

ted polarization. This segmentation highlights regions with estimated fractal dimension

between 4.0 and 5.0. It provides a good separation between land and water.
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Figure 5.11. Moffett HH Image

Figure 5.11 shows an image of the scene of Moffett Field. The image was generated

using values of HH power returns.
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Figure 5.12. Moffett HH Full Segmentation Signature

Figure 5.12 is the full segmentation signature of the image in Figure 5.11. It shows

some separation between the city and the airfield and plains to the north.
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Figure 5.13. Moffett HV Image

Figure 5.13 is an image of the same scene generated using the HV power returns. It

shows much less detail than do either of the HH or VV (not pictured for this scene) power

return images. This may be due in part to non-optimal normalization of the HV power

return dataset.
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Figure 5.14. Moffett HV Segmentation, 2.05 < Df < 3.0

Figure 5.14 is the histogram and contrast segmentation of the HV power return

dataset imaged in Figure 5.13. The segmentation highlights those regions with estimated

fractal dimensions between 2.05 and 3.0. With the exception of the airfield, this segmen-

tation separates the man-made areas from the natural areas in the scene.
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Figure 5.15. Moffett 6 Image

Figure 5.15 is the image of the Moffett Field scene generated using 6,the phase

returns, from an elliptically polarized transmitted wave with X = 5 and 0 = -40 degrees.

As seen previously with the phase-only images, it is difficult to determine any details about

the scene.
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Figure 5.16. Moffett 6 Segmentation, 2.8 < Df _ 3.0

Figure 5.16 is the histogram and contrast segmentation of the image in Figure 5.15.

The segmentation highlights those regions with estimated fractal dimensions between 2.8

and 3.0. This segmentation separates the man-made areas from the natural areas in the

scene.
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Figure 5.17. Moffett Av Image

Figure 5.17 is the image generated using only the Av magnitude returns from the

X = 5, V = -40 degree elliptically polarized transmitted wave. While this is generally

quite a good image of the scene, there is some vertical "smearing" in the forested areas

north of the city. The cause of this smearing is not known.
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Figure 5.18. Moffett Av Segmentation, 2.7 < D! < 3.0

Figure 5.18 is the histogram and contrast segmentation of the Av image in Fig-

ure 5.17. This segmentation highlights those regions with estimated fractal dimensions

between 2.7 and 3.0. This segmentation separates the city and the forested regions from

all else in the scene.

5-20



Figure 5.19. Moffett FULL Segmentation, 4.25 < Df < 5.0

Figure 5.19 is the histogram and the contrast segmentation of the five dimensional

dataset, FULL, which includes 6, AH and Av returns form the X = 5, 0 = -40 degree

transmitted wave. This segmentation highlights those regions with estimated fractal di-

mensions between 4.25 and 5.0. This segmentation separates the city from all else in the

scene, including the main roads within the city and the forest regions to the north. This

segmentation is the best example that demonstrates that the use of the complex data

(phase and magnitude), as opposed to power rtitrns only. dfnop. aid in the segmentation

process.
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Figure 5.20. Bridge HH Image

Figure 5.20 is an image of the Golden Gate Bridge scene showing the power returns

from an HH co-polarized return. The image clearly shows the city, bridge and natural

regions.
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Figure 5.21. Bridge HH Segmentation, 2.75 <_ D! < 3.0

Figure 5.21 is the histogram and contrast segmentation of the image in Figure 5.20.

This segmentation highlights those regions with estimated fractal dimension between 2.75

and 3.0. It does a reasonable job of separating the man-made areas from the natural areas.
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Figure 5.22. Bridge VV Image

Figure 5.22 shows the same scene generated from a VV power return. Once again
the VV power return image shows more roughness in the water than does the HH power

return image.
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Figure 5.23. Bridge VV Segmentation, 2.9 < D! 3.0

Figure 5.23 is the histogram and contrast segmentation for the image in Figure 5.22.

This segmentation highlights those regions with estimated fractal dimension between 2.9

and 3.0. It separates the city from the other areas in the scene.
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Figure 5.24. Bridge Av Image

Figure 5.24 is the image generated from the dataset containing only AV, the mag-

nitude of the vertically polarized component of an elliptically polarized transmitted wave

with )L = 10 and ¢ = 40 degrees. This image shows great detail about the scene.
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Figure 5.25. Bridge Al, Segmentation, 2.875 < Df < 3.0

Figure 5.25 is the histogram and contrast segmentation of the image in Figure 5.24.

This segmentation highlights those regions with estimated fractal dimensions between 2.875

and 3.0. It does a fairly good job of separating the bridge from the rest of the scene.
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Figure 5.26. Bridge FULL Segmentation, 4.25 < D _ <5.0

Figure 5.26 is the contrast segmentation and histogram of the five dimensional

dataset, FULL, containing 6, AH and Av values for the X = 10, i/ = 40 transmitted

polarization. The segmentation highlights regions with estimated fractal dimension be-

tween 4.25 and 5.0. It clearly separates the bridge from all else in the scene.
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5.4.1 General Observations. Results of the fractal dimension estimations lend great

support for the hypothesis that the "surfaces" generated by SAR returns could be modelled

by fractal geometry. In all cases the estimates of fractal dimension fell within the expected

intervals. All of the estimations were between 2.0 and the number of degrees of freedom

for each specific dataset analyzed.

A study of the histograms for the power return segmentations and the magnitude

return segmentations shows several similarities. In most cases a large number of regions

had estimated fractal dimensions close to 2.25. Contrast segmentations of these regions

showed that they usually represented regions containing boundaries or transitions between

major areas within the scenes.

In almost every segmentation the regions with the highest estimated fractal dimen-

sions represented man-made areas or very rough natural terrain. As predicted by classical

Euclidean geometry, the flat surfaces in the scenes (ie. the water and the airfield) had

estimated fractal dimensions approaching 2.0.

5.5 Objective Analysis

As stated in Chapter IV, data for each scene was available in nine different datasets.

These datasets contained information arranged in varying Euclidean dimensions. It was

desired to determine which of the available datasets provided the most information and

thus the best segmentations of the scenes.

5.5.1 Figures of Merit. To effectively compare the quality of the segmentations it

was necessary to define some figures of merit. Those chosen were: Pd, the probability of

detection, PI., the probability of a false alarm, and T, the ratio of Pd/PG.

Pd was defined as the probability that the segmentation process would correctly

identify and highlight regions within an area of interest. P1 n was the probability that the

segmentation process would incorrectly identify and highlight regions within an area of

conflict as part of the area of interest. Since it was desirable to simultaneously maximize

Pd and minimize Pf., the ratio of the two, T = Pd/IPJ, was a convenient measure.

Maximizing T was the same as simultaneously maximizing Pd and minimizing P 0.
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Those readers familiar with radar terminology will notice that Pd and PI. are defined

here just as they are in conventional radar systems analysis (18:27].

5.5.2 AOl and AOC. The objective analysis was performed by choosing an area of

interest (AOI) and an area of conflict (AOC) which would often have an estimated fractal

dimension close to that of the area of interest. Specifically, the AQIs chosen for each scene

were the city regions (the bridge was also included in the appropriate scenes). The AOCs

were the forested or rough terrain areas in each scene.

These areas were chosen in part because the ability to differentiate between man-

made and natural regions was one of the original intents of this thesis. Another reason was

that these regions consistently had estimated fractal dimensions at the uppermost end of

the histograms generated for the segmentations. This meant that both the AOIs and the

AOCs could be separated from all else in the scenes by selecting to display segmentations

with only those fractal dimensions greater than a minimum threshold value. The upper

bound on the intervals of display was always equal to number of degrees of freedom in

the particular dataset under consideration. This was fortuitous because it meant that the

interval of fractal dimensions of interest could be defined by only one number, the lower

bound, instead of both a lower and an upper bound. This lower bound, or threshold, was

designated r and was the independent variable which defined each contrast segmentation

used in the objective analysis. The selection of a segmentation with a lower bound r

also necessarily defined a specific Pd and P1 .. Thus every different segmentation could be

specified by either r or a combination of Pd and P10.

Neither this threshold, r, nor the figure of merit,T, should be confused with the test

statistics or likelihood ratios used in conventional detection and estimation theory [6:292-

293] [18:27-29]. Although they are similarly defined, they cannot be similarly interpreted

for this application.

5.5.3 Analysis Procedure. The number of 8x8 pixel regions that covered the AQIs

and the AOCs in the images were counted (estimated). The segmentations were then

performed and again the number of 8x8 pixel regions relating to both the area of interest
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and the area of conflict were counted. (These estimates were thought to be well within

10% of the actual number of regions.)

Pd was computed as the number of regions relating to the area of interest in the

segmentation divided by the number of regions covering the area of interest in the image.

Pf1 was the number of regions relating to the areas of conflict displayed in the segmentation

divided by 4096 (the total number -f regions in the images) minus the number of regions

relating to the area of interest in the images.

# of regions in AOI in segmentation

of regions in AO in image

(5.1)

Pfa = # of regions in AOC in segmentation
(4096 - # of regions in AOI in image)

Various segmentations, with differing r, were then observed for each dataset. Pd,

P1 a and T were computed for each segmentation. Comparisons were made between the

different segmentations derived from a single dataset and between the best segmentation

of each dataset (defined by maximum T) with the best from the other eight datasets.

The "best" segmentations for each of the nine datasets are pictured in Figures 5.27

through 5.53 in order of ascending quality (T) for each of the three scenes. Data from this

analysis is shown in Table 5.1 and the final results of the comparisons are summarized in

Table 5.2.

Table 5.1 shows values of r and T for each of the nine different datasets for each

scene. Rankings of the quality of segmentations made from these datasets are given for

each scene. These rankings are based on comparing T values within each scene. The

final rankings represent an averaging of the rankings of each dataset over the three scenes.

The rankings for each scene and the final rankings are tabulated in descending order in

Table 5.2.

5.5.4 General Observations. Table 5.2 shows that, on average, the higher the di-

mension of the dataset being segmented, the better the segmentation will be. The five
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Dataset Muffett San Fran Bridge Ave Rank Final Rank

r T Rank r T Rank r T Rank

HH 2.97 9.0 8 2.95 11.8 5 2.96 12.5 4 5.7 6,7

VV 2.96 7.5 9 2.98 9.4 7 2.93 8.3 8 8.0 9

HV 2.04 39.9 4 2.09 11.7 6 2.30 11.7 5 5.0 4

POL 3.75 39.0 5 3.75 37.1 2 3.55 10.7 7 4.7 3

3POL 3.8 71.0 2 3.75 42.8 1 3.85 10.9 6 3.0 2

6 2.96 56.9 3 2.94 12.2 4 2.98 7.7 9 5.3 5

A11  2.96 11.81 6 2.875 4.75 9 2.92 69.2 3 6.0 8

Av 2.96 11.0 7 2.98 6.8 8 2.92 89.0 2 5.7 6,7

FULL 4.25 179 1 4.4 14.2 3 3.875 98 0 1 1.7 1

Table 5.1. Comparison of Datasets by Objective Analysis

dimensional datasets, FULL, and 3POL are ranked as best and second best, respectively.

The four dimensional dataset, POL, is ranked third out of the nine different datasets.

Comparisons of the final rankings of the three dimensional datasets shows that the

cross-polarized power returns lead to better segmentations than do the co-polarized power

returns or the magnitude or phase returns. They also indicate that the datasets containing

7nformation about the horizontally polarized returns may be more useful than are the

vertically polarized returns. These observations, however, are not intuitive and may be

unique to these scenes and AOC and AOI choices. As such, they are not interpreted as

generally applicable.

The quality of the segmentations of the 6 datasets is a testimony to the power of

the fractal dimension segmentation process. Although the images generated from these

datasets are generally unrecognizable, the information which they contain about the scene

is revealed after segmentation. The segmentations are often more recognizable than the

images!

Upsilon was a useful figure of merit for comparing the value of datasets depicting

the same scene, but was not useful for comparisons between differing scenes. For exam-
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pie, a s,-gmentation with T = 10 is "better" than a segmentation with T = 5 if the

segmentations were of the same scene. This was not necessarily true if the two segmenta-

tions represented different scenes. Thus no conclusions could be made about what types

of scenes may or may not lend themselves to a fractal dimension segmentation.

Table 5.1 shows that the same value of r did not identify segmentations of similar

quality (same T) for every scene. To achieve a given T, in the different scenes, the thresh-

old, r, had to be empirically determined. This meant that a single threshold value could

not be preprogrammed into an automated segmentation algorithm to achieve segmenta-

tions of some specified quality. This threshold value must be adaptively determined for

each different scene.

Some of the "best" segmentations had a calculated Pd of less than 0.5. Radar purists

may be alarmed at the use of a Pd ! 0.5. They should not be. In a radar system, Pd

is a measure of the system's ability to determine whether or not a target exists. A radar

system yielding a Pd of less than 0.5, according to classical detection theory, is interpreted

as worse than a coin flip at determining the existence of a target. These systems actually

make the wrong decision most of the time. To correct this problem, the final decision can

be reversed so that '_i system will then make the correct decision most of the time.

A Pd of less than 0.5, as defined in this segmentation process, can not be inter-

preted in the same manner. The segmentation Pd does not determine a yes/no, target

present/target not present, decision. Instead, it provides a measure of the percentage of

the target area (that is known to exist) that is correctly selected by the segmentation

process. The definition of a "good" segmentation (defined by maximum T) makes no

limitations on the acceptable values of Pd. The interpretation must be that a "good" seg-

mentation between an AOI and a AOC can be made even though less than one-half of the

total AOI is represented in the final segmentation.

It is interesting to note that almost without exception, the threshold, r which de-

termined the "best" segmentation under the subjective analysis criteria was within ap-

proximately seven percent of the r which determined the "best" segmentation under the

objective analysis. This fact can be attributed to either the great strength of the human
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visual system to segment images or, to biases introduced into the subjective analysis due

to the analyzer's (the author's) a priori knowledge of the ground truth of the scenes.
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Rank Moffett San Fran Bridge Final

1 FULL 3POL FULL FULL

2 3POL POL Ay 3POL

3 6 FULL A,, POL

4 HV 6 RH HV

5 POL HR HV 6

6 AH HV 3POL Av,HH

7 Av VV POL A,,HH

8 HR , VV AH,

9 VV AH, 6 VV

Table 5.2. Ranking of Dataset3
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Figure 5.29. Moffett Av Segmentation, 2.96 < DI: 3.0, T =11.0

5-38



A 1%9.1

IN(* led IN 0""4II~O~A Igo IN"#.

Figure 5.30. Moffett Aff Segmentation, 2.96 < Df !5 3.0, T =11 8
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Figure 5.31. Moffett POL Segmentation, 3.75 < Df 4.0, T 39.0
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Figure 5.32. Moffett HV Segmentation, 2.04 <D < 3.0, T = 39.9
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Figure 5.33. Moffett 6 Segmentation, 2.96 < Df !5 3.0, T =56.9
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Figure 5.34. Moffett 3POL Segmentation, 3.8 < Df: 5.0, T =71.0
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Figure 5.35. Moffett FULL Segmentation, 4.25 < Df <55.0, T =179.0
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Figure 5.36. San Fran AH Segmentation, 2.875 < D/f 3.0, T = 4.75
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Figure 5.37. San Fran Av Segmentation, 2.98 < DI 3.0, T =6.8
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Figure 5.38. San Fran VV Segmentation, 2.98 < Di 3.0, T = 9.4
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Figure 5.39. San Fran HV Segmentation, 2.09 < Df :5 3.0, T =11.7
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Figure 5.40. San Ran HH Segmentation, 2.95 < Df: 3.0, T =1.
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Figure 5.42. San Fran FULL Segmentation, 4.4 < Df- 5.0, T - 14.2
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Figure 5.43. San Fran POL Segmentation, 3.75 S Df 4.0, T =37.1
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Figure 5.44. San Fran 3POL Segmentation, 3.75 <Di 5.0, T =42.8
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Figure 5.45. Bridge 6 Segmentation, 2.98 < 0,' 3.0, T =7.7
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Figure 5.46. Bridge VV Segmentation, 2.93 < Df ! 3.0, T = 8.3
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Figure 5.47. Bridge POL Segmentation, 3.55!5 D1  4.0, T =10.7
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Figure 5.48. Bridge 3POL Segmentation, 3.85 < Df 5.0, T =10.9
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Figure 5.49. Bridge HV Segmentation, 2.3 : D1 < 3.0, T = 11.7
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Figure 5.50. Bridge HH Segmentation, 2.96 :5 Df :5 3.0, T =12.5



Figure 5.51. Bridge AH Segmentation, 2.92 < D<3.0, T =69.2
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Figure 5.52. Bridge AVr Segmentation, 2.92 < Df 3.0, T =89.0
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Figure 5.53. Bridge FULL Segmentation, 3.875 < Df _ 5.0, T = 98.0
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VI. Conclusions and Recommendations

6.1 Overview

This chapter contains the conclusions made from the work done in this thesis. It also

contains recommendations from the author regarding future studies in the area of fractal

geometry segmentation of images.

6.2 Conclusions

Fractal geometry techniques provide a valid and useful approach to segmenting po-

larimetric SAR images. The quality and utility of these segmentations differs with varying

polarizations and with varying combinations of complex data. This conclusion is supported

by the results of both the subjective and objective analyses described in Chapter V.

The use of the complex data (phase and magnitude) of the SAR returns yields more

information about the target scene than does the use of only the magnitude or power re-

turns. This conclusion is made as a result of the objective analysis described in Chapter V.

It is clear that .he higher Euclidean dimension of the dataset being segmented, the "bet-

ter" the segmentation will be. Intuitively, the more information fed into the segmentation

process, the better job it will do.

There is nothing unique in the methodology of this thesis which limits the fractal

dimension segmentation algorithms to SAR data only. Any image, from any source (ie.

photographs, digital data, etc.), which can be displayed using intensity values can be

segmented by these algorithms.

6.3 Recommendations

The following recommendations are made to anyone pursuing studies in the use of

fractal geometry to segment images.

6.3.1 Preprocessing. Some preprocessing of the image data may aid in the segmen-

tation or object identification processes. This preprocessing could locate and enhance the

boundaries between different areas in an image. Estimations of fractal dimension could be
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made for only those regions which lie completely within these defined areas. In this way,

estimates of the regions which contain boundaries will not skew or blend segmented areas

into each other. Greater contrast between distinct areas would result.

Edge enhancement might also help in making estimates of the fractal dimensions

of these same boundaries. The boundaries themselves could be considered as curves in

Euclidean two-space. The fractal dimensions of these boundaries might give some aid in

identifying what may be contained within the bounded area. For example, a boundary or

edge with a fractal dimension of approximately 1.0 might indicate a man-made area, or

a boundary with a higher fractal dimension, say 1.68, might indicate a coastline or forest

edge.

6.3.2 Optimum Region Size. Some work should be done to determine the optimum

region size for use in the segmentation process. The 8x8 pixel regions used in this thesis

were chosen for nonrigorous reasons. Previous experimenters have also pondered this same

question without finding a definitive answer.

6.3.3 Optimum Polarization. A study should be undertaken to determine what the

optimum polarizations are for segmenting SAR data by fractal geometry. Some work has

already been accomplished to determine the optimum polarizations for enhancing contrast

within the SAR images [16:988-990] [34:539-543] and to reduce the effects of speckle noise

in the images [21]. This same type of effort might prove useful if the optimization was

done specifically with image segmentation in mind instead of simply image display.

6.3.4 Optimum Normalization. Follow-on work to this thesis might also include

studies to determine the optimum techniques for normalizing the image data prior to

display. Normalization in this thesis was done on a empirical basis. Clearly there is a more

rigorous method.

6.4 Summary

Fractals are wonderfully powerful tools with which to study nature. Their full po-

tential as an aid to scene segmentation and object identification has not yet been tapped.
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Abstract

This thesis describes how fractal geometry was used to segment synthetic aperture

radar (SAR) images. The fractal dimension of each non-overlapping 8x8 pixel region in

a 5i2x512 pixel image was estimated by use of a multidimensional extension of the box

counting algorithm. The differences in estimated fractal dimensions were used to differ-

entiate between regions. The SAR images used were represented by quantized "surfaces".

These surfaces were defined by nine different datasets of various Euclidean dimensions

ranging from three to five. The degrees of freedom (Euclidean dimensions) of the datasets

were the X and Y coordinates of each pixel and various combinations of power return

values, magnitude return values and phase return values for each pixel. The SAR return

values for four different SAR transmit and receive polarization configurations were deter-

imined by polarization synthesis techniques using the Stokes vectors of the transmitted and

backscattered waves and the target reflectivity phase matrix. Phase matrix data for three

different scenes was provided by the Jet Propulsion Laboratory, Pasadena, CA. .

Thesis results indicate that the fractal dimension of an image "surface'rovides a

useful method to segment SAR images. Comparisons between segmentations made using

various datasets indicate that datasets containing the magnitude and phase return values

yield more information helpful to image segmentation than do datasets containing only

power return values. It was also determined that combinations of the various types of return

values (ie. power, ma\gnitude and phase returns) into a single dataset of higher Euclidean

dimension, can lead to better segmentations than those made using lower dimensional

datasets. The fractal diikension estimation and segmentations techniques used in this

thesis are not unique to SAR imagery. They may be easily applied to any data which can

be arranged into datasets representing image "surfaces."
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